Transverse Meson Structure from Exclusive Measurements #### **Meson Form Factors** Simple $q\bar{q}$ valence structure of mesons presents the ideal testing ground for our understanding of bound quark systems. In quantum field theory, the form factor is the overlap integral: $$F_{\pi}(Q^2) = \int \phi_{\pi}^*(p)\phi_{\pi}(p+q)dp$$ The meson wave function can be separated into φ_{π}^{soft} with only low momentum contributions $(k < k_0)$ and a hard tail φ_{π}^{hard} . While φ_{π}^{hard} can be treated in pQCD, φ_{π}^{soft} cannot. From a theoretical standpoint, the study of the Q^2 -dependence of the form factor focuses on finding a description for the hard and soft contributions of the meson wave-function. ## pQCD and the Charged Pion Form Factor #### At large Q^2 , perturbative QCD (pQCD) can be used $$F_{\pi}(Q^2) = \frac{4\pi C_F \alpha_S(Q^2)}{Q^2} \left| \sum_{n=0}^{\infty} a_n \left(\log \left(\frac{Q^2}{\Lambda^2} \right) \right)^{-\gamma_n} \right|^2 \left[1 + O\left(\alpha_S(Q^2), \frac{m}{Q} \right) \right]$$ at asymptotically high Q^2 , only the hardest portion of the wave function remains $$\phi_{\pi}(x) \underset{Q^2 \to \infty}{\longrightarrow} \frac{3 f_{\pi}}{\sqrt{n_c}} x (1 - x)$$ and F_{π} takes the very simple form $$F_{\pi}(Q^2) \underset{Q^2 \to \infty}{\longrightarrow} \frac{16\pi\alpha_s(Q^2)f_{\pi}^2}{Q^2}$$ G.P. Lepage, S.J. Brodsky, Phys.Lett. 87B(1979)359. where f_{π} =92.4 MeV is the $\pi^+ \rightarrow \mu^+ \nu$ decay constant. #### Pion Form Factor at Finite Q² - At finite momentum transfer, higher order terms contribute. - Calculation of higher order, "hard" (short distance) processes difficult, but tractable. #### Q^2F_{π} should behave like $\alpha_s(Q^2)$ even for moderately large Q^2 . → Pion form factor seems to be best tool for experimental study of nature of the quark-gluon coupling constant renormalization. [A.V. Radyushkin, JINR 1977, arXiv:hep þ/0410276] #### **Recent Theoretical Advances** #### Amazing progress in the last few years. - We now have a much better understanding how Dynamical Chiral Symmetry Breaking (DCSB) generates hadron mass. - Quenched lattice QD data on the dressed quark wave function were analyzed in a Bethe Salpeter Equation framework by Bhagwat, et al. - For the first time, the evolution of the current quark of pQCD into constituent quark was observed as its momentum becomes smaller. - The constituent-quark mass arises from a cloud of low-momentum gluons attaching themselves to the current quark. - This is DCSB: an essentially non-perturbative effect that generates a quark *mass from nothing*: namely, it occurs even in the chiral limit. M.S. Bhagwat, et al., PRC **68** (2003) 015203. L. Chang, et al., Chin.J.Phys. **49** (2011) 955. ### Implications for Pion Structure L. Chang, et al., PRL 110 (2013) 132001; 111 (2013) 141802 Craig Roberts (2016): "No understanding of confinement within the Standard Model is practically relevant unless it also explains the connection between confinement and DCSB, and therefore the existence and role of pions." ■ For the pQCD derivation on slide #3, the normalization for F_{π} has been based on the conformal limit of the pion's twist 2PDA. $$\phi_{\pi}^{cl}(x) = 6x(1-x) -$$ ■ This leads to "too small" F_{π} values in comparison with present & projected JLab data. < $$\phi_{\pi}(x) = (8/\pi)\sqrt{x(1-x)}$$ ■ Simply inputting this $\varphi_{\pi}(x)$ into the pQCD expression for F_{π} brings the calculation much closer to the data. ■ Underestimates full computation by ~15% for Q²≥8 GeV². Addresses issue raised in 1977. # New Lattice QCD at Higher Q² - Lattice QCD calculations traditionally have difficulty predicting hadron structure at high-momentum transfer. - Form factors drop rapidly with Q^2 , so one is attempting to extract a much weaker signal from datasets with finite statistics. - QCDSF/UKQCD/CSSM Collab. address with new technique relating matrix elements to energy shifts. - Simulate single set of u,d,s gauge configurations corresponding to $m_{\pi} \approx 470$ MeV. - Confident future LQCD will provide insight into transition of perturbative to non-perturbative QCD. - HPQCD Collab. study pseudoscalar η_S meson made of valence s quarks accurately tuned on full QCD ensembles of gluon field configurations. - Qualitatively similar to pion since $m_s < \Lambda_{QCD}$, but numerically much faster. - F_{π} result flat for 2< Q^2 <6 GeV², far above asymptotic QCD value. - Confident of future LQCD calcs. at higher Q^2 . #### The Charged Kaon – a second QCD test case - The properties of the K⁺ are also strongly influenced by DCSB. - K⁺ PDA also is broad, concave and asymmetric. - While the heavier *s* quark carries more bound state momentum than the *u* quark, the shift is markedly less than one might naively expect based on the difference of *u*, *s* current quark masses. [C. Shi, et al., PRD 92 (2015) 014035]. - In the hard scattering limit, pQCD predicts that the π^+ and K^+ form factors will behave similarly: $F_{-}(O^2)$ f_{-}^2 $$F_K(Q) \longrightarrow f_{\pi}(Q^2)$$ ■ It is important to compare the magnitudes and Q²-dependences of both form factors. #### Measurement of π^+ Form Factor – Low Q^2 At low Q^2 , F_{π} can be measured model-independently via high energy elastic π^- scattering from atomic electrons in Hydrogen - CERN SPS used 300 GeV pions to measure form factor up to $Q^2 = 0.25 \text{ GeV}^2$ [Amendolia, et al, NP **B277**(1986)168] - Data used to extract pion charge radius $r_{\pi} = 0.657 \pm 0.012$ fm Maximum accessible Q² roughly proportional to pion beam energy Q²=1 GeV² requires 1 TeV pion beam # Measurement of π^+ Form Factor – Larger Q^2 At larger Q^2 , F_{π} must be measured indirectly using the "pion cloud" of the proton via pion electroproduction $p(e,e'\pi^+)n$ $$|p\rangle = |p\rangle_0 + |n\pi^+\rangle + \dots$$ - At small -t, the pion pole process dominates the longitudinal cross section, σ_t - In Born term model, F_{π}^2 appears as, $$\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2, t)$$ Drawbacks of this technique - 1.Isolating σ_L experimentally challenging - 2. Theoretical uncertainty in form factor extraction. #### Measurement of K⁺ Form Factor Similar to π⁺ form factor, elastic K⁺ scattering from electrons used to measure charged kaon for factor at low Q² [Amendolia, et al, PL B178(1986)435] - Can "kaon cloud" of the proton be used in the same way as the pion to extract kaon form factor via p(e,e'K*) \(\Lambda\)? - Kaon pole further from kinematically allowed region. $$\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_K^2)} g_{K\Lambda N}^2(t) F_K^2(Q^2,t)$$ Many of these issues will be explored in JLab E12-09-11. $$2\pi \frac{d^2\sigma}{dtd\phi} = \varepsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\varepsilon(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi$$ - L-T separation required to separate σ_L from σ_T . - Need to take data at smallest available -t, so σ_L has maximum contribution from the π^+ pole. # Measuring dσ_L/dt at JLab $$2\pi \frac{d^2\sigma}{dtd\phi} = \varepsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\varepsilon(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi$$ - Rosenbluth separation required to isolate σ_{L} - Measure cross section at fixed (W,Q², t) at 2 beam energies - Simultaneous fit at 2 ϵ values to determine σ_L , σ_T , and interference terms - Control of point systematic uncertainties crucial due to $1/\Delta\epsilon$ error amplification in σ_L - Careful attention must be paid to spectrometer acceptance, kinematics, efficiencies, ... Horn, et al, PRL **97**(2006)192001 #### **Chew-Low Method to determine Pion Form Factor** $p(e,e'\pi^+)n$ data are obtained some distance from the $t=m_{\pi}^2$ pole. \rightarrow "Chew Low" extrapolation method requires knowing the analytic dependence of $d\sigma_L/dt$ through the unphysical region. #### Extrapolation method last used in 1972 by Devenish & Lyth - Very large systematic uncertainties. - Failed to produce reliable result. - \rightarrow Different polynomial fits equally likely in physical region gave divergent form factor values when extrapolated to $t=m_{\pi}^{2}$. The Chew-Low Method was subsequently abandoned. #### **Chew-Low Method Check with PseudoData** Plot $$F^2 = \frac{N}{4\hbar c (eg_{\pi NN})^2} \frac{(t - m_{\pi}^2)^2}{-Q^2 m_{\pi}^2} \frac{d\sigma_L}{dt}$$ vs. $-t$ - Pure pole cross section gives straight line through origin, with value $F_{\pi}^{2}(Q^{2})$ at pole. - Other contributions introduce non-linearities since don't contain $(t-m_{\pi})^2$ factor, but don't influence F^2 value at pole. - \rightarrow Do not know if behavior of F^2 with -t is linear, quadratic, or higher order. #### All fits missed the input F_{π} . → no consistent trend on order of polynomial best able to reproduce input value $$(6-15\% \text{ deviation}, \mathbf{Q}^2=0.6-2.45 \text{ GeV}^2).$$ - ■Experimental σ_L data have only 4-6 *t*-bins and statistical and systematic uncertainties of 5-10%. - → Extrapolation with real data will be even more uncertain. For details see: G.M. Huber et al., PRC 78(2008)045203. # Only reliable approach is to use a model incorporating the π^+ production mechanism and the 'spectator' nucleon to extract F_{π} from σ_{L} . ■ JLab F_{π} experiments use the Vanderhaeghen-Guidal-Laget (VGL) Regge model as it has proven to give a reliable description of σ_L across a wide kinematic domain. [Vanderhaeghen, Guidal, Laget, PRC 57(1998)1454 - More models would allow a better understanding of the model dependence of the F_{π} result. There has been considerable recent interest: - T.K. Choi, K.J. Kong, B.G. Yu, arXiv: 1508.00969. - T. Vrancx, J. Ryckebusch, PRC 89(2014)025203. - M.M. Kaskulov, U. Mosel, PRD 81(2010)045202. - S.V. Goloskokov, P. Kroll, Eur. Phys. J. C65(2010)137. Our philosophy remains to publish our experimentally measured $d\sigma_L/dt$, so that updated values of $F_{\pi}(Q^2)$ can be extracted as better models become available. # Garth Huber, huberg@uregina.ca # Extract $F_{\pi}(Q^2)$ from JLab σ_L data Model incorporates π^+ production mechanism and spectator neutron effects: #### VGL Regge Model: ■ Feynman propagator $\left(\frac{1}{t - m_{\pi}^2}\right)$ replaced by π and ρ Regge propagators. - Represents the exchange of a <u>series</u> of particles, compared to a <u>single</u> particle. - Free parameters: Λ_{π} , Λ_{ρ} (trajectory cutoff) [Vanderhaeghen, Guidal, Laget, PRC 57(1998)1454] • At small -t, σ_L only sensitive to F_{π} $$F_{\pi} = \frac{1}{1 + Q^2 / \Lambda_{\pi}^2}$$ Fit to σ_L to model σ_L gives F_{π} at each Q^2 Error bars indicate statistical and random (pt-pt) systematic uncertainties in quadrature. Yellow band indicates the correlated (scale) and partly correlated (t-corr) systematic uncertainties. $\Lambda_{\pi}^2 = 0.513$, 0.491 GeV², $\Lambda_{\rho}^2 = 1.7$ GeV². # Garth Huber, huberg@uregina.ca # **JLab Current and Projected Data** JLab 12 GeV upgrade will allow measurement of F_{π} to much higher Q^2 . No other facility worldwide can perform this measurement. New overlap points at $Q^2=1.6, 2.45$ will be closer to pole to constrain- t_{min} dependence. New low Q^2 point will provide best comparison of the electroproduction extraction of F_{π} vs. elastic $\pi + e$ data. The ~10% measurement of F_{π} at Q²=8.5 GeV² is at higher $-t_{min}$ =0.45 GeV². Requires additional measurements (not yet approved) to verify π -pole dominance in σ_{L} . #### EIC Exclusive $p(e,e'\pi^+n)$ Kinematics #### **ε>0.995** fairly straightforward. - 5 GeV(e⁻) x 100 GeV(p), allows access to a wide kinematic range. - Lab cross sections in µb/sr²/GeV. - C. Weiss, V. Guzey (2008) extrapolation of soft model cross section to high Q², assuming QCD scaling behavior and W²≫Q². | Q^2 | W | P _e , | θ_e , | P_{π} | $ heta_\pi$ | P_n | θ_n | -t | $d^3\sigma$ | |-------|-----|------------------|--------------|-----------|-------------|-------|------------|-------|-------------| | 10.0 | 7.0 | 5.4 | 35.6 | 16.9 | -10.6 | 83.7 | -0.01 | 0.032 | 1.1 | | 15.0 | 7.0 | 5.6 | 43.0 | 23.2 | -9.4 | 77.2 | -0.02 | 0.066 | 0.34 | | 20.0 | 7.5 | 5.8 | 49.0 | 25.7 | -9.8 | 74.4 | -0.02 | 0.085 | 0.12 | | 25.0 | 8.5 | 6.0 | 54.2 | 25.0 | -11.2 | 74.9 | -0.02 | 0.081 | 0.039 | | 30.0 | 9.0 | 6.2 | 58.8 | 26.1 | -11.7 | 73.6 | -0.02 | 0.090 | 0.019 | | 35.0 | 9.5 | 6.4 | 62.8 | 26.8 | -12.3 | 72.7 | -0.02 | 0.098 | 0.010 | ## High ε>0.995 Detector Requirements - Only way to assure exclusivity of the $p(e,e'\pi^+n)$ reaction is by detecting the recoil neutron. - Neutrons are emitted at small angle (θ <0.05°), momentum 73-84% of the proton beam. Resolution? - Scattered electron (5 GeV e⁻x 100 GeV p): - Scattered electron angles of 35°-63° (wrt incident electron beam). - Resolution requirements modest (δP/P≈5x10⁻³, δθ≈1mr) - Kinematics were chosen to avoid regions where cross sections drop rapidly, needing high resolution for small systematic errors. - 17-26 GeV/c π^+ detected at forward angle (9.5°-12.5°) - Will need reliable PID. e.g. ePHENIX concept in White Paper has Aerogel & RICH up to ~40°. - Requirements appear to be compatible with both eRHIC and JLEIC detector conceptual designs. - →The critical issue is identification of the exclusive events. # 5x100 Exclusive $p(e,e'\pi^+n)$ Kinematics # p(e,e'K+1) Requirements $$M_X = \sqrt{(E_{\text{det}} - E_{init})^2 - (p_{\text{det}} - p_{init})^2}$$ - At EIC CM energies, exclusive π , K cross sections are likely more comparable, statistics likely to be less of an issue than at JLab. - Assuring exclusivity poses many challenges. - $\Lambda\Sigma$ final states are closer together in missing mass than n, n+ π . - $\Lambda c\tau = 7.89$ cm. - Planned vertex detectors cover central rapidity range, while in these kinematics Λ is at very small angle to proton beamline. - Would need $\Lambda \rightarrow \pi^- p$ simulation. Requirements similar to EIC K^+ structure function measurement. JLab Hall C simulation at Q²=2.0 GeV², W=3.0 GeV and high ϵ # How to separate σ_L from σ_T in e-p Collider $$\varepsilon = \frac{2(1-y)}{1+(1-y)^2} \text{ where the fractional energy loss } y = \frac{Q^2}{x(s_{tot} - M_N^2)}$$ - Systematic uncertainties in σ_L are magnified by $1/\Delta\epsilon$. - Desire Δε>0.2. - To access ε <0.8, one needs y>0.5. - This can only be accessed with small s_{tot}, i.e. low proton collider energies (5–15 GeV), where luminosities are too small for a practical measurement. - A conventional L-T separation is impractical, need some other way to identify σ_L . ## σ_L via Beam and Target Polarization # Although the technique has not been tested for this reaction, it is in principle possible to extract $R=\sigma_L/\sigma_T$ using polarization degrees of freedom For parallel kinematics (outgoing meson along \vec{q}) in proton rest frame Longitudinal polarization of virtual photon z-component of proton "reduced" polarization in exclusive pseudoscalar meson production $$R = \frac{\sigma_L}{\sigma_T} = \frac{1}{\varepsilon_L} \left(\frac{1}{\chi_z} - 1 \right)$$ $$\varepsilon_L = \left(Q^2 / \omega_{cm}^2\right) \varepsilon$$ $$\chi_z = \frac{1}{2P_e P_p \sqrt{1 - \varepsilon^2}} A_z$$ A_z = double-spin asymmetry Schmieden, Tiator Eur.Phys.J. A 8(2000)15 7. ## **Polarization Technique Considerations** - A point in favor of this technique is that P_p (component of proton polarization parallel to \vec{q}) should be readily optimizable at EIC. - Need to keep in mind that the $R=\sigma_L/\sigma_T$ polarization relation only strictly applies in parallel kinematics. - The detector geometry enforces very tight constraints, as recoil neutron angle is very sensitive to θ_{CM} . $$\sigma_L \propto P_e P_p \sqrt{1-\epsilon^2} A_z$$ - Figure of merit for this technique vanishes for ε≈1.0. - $\epsilon \approx 0.95$ gives $\sqrt{1-\epsilon^2} \approx 0.31$ - Requires E_{CM} <20 GeV, e.g. 3x25. Luminosity low. - At best, this could be used as a spot-check only in specific kinematics. Generally not feasible. # Isolate σ_L using a Model - In the hard scattering regime, QCD scaling predicts $\sigma_L \propto Q^{-6}$ and $\sigma_T \propto Q^{-8}$. - At high Q^2 , W accessible at EIC, phenomenological models predict $\sigma_L \gg \sigma_T$ at small -t. - The most practical choice might be to use a model to isolate dominant $d\sigma_L/dt$ from measured $d\sigma_{LNS}/dt$. - In this case, it is very important to confirm the validity of the model used. - T. Vrancx, J. Ryckebusch, PRC 89(2014)025203. - Predictions are for ε >0.995 Q^2 , W kinematics shown earlier. #### π^-/π^+ data to check *t*-channel dominance $\blacksquare \pi$ *t*-channel diagram is purely isovector (G-parity conservation). $$R_{L} = \frac{\sigma_{L}[n(e, e'\pi^{-})p]}{\sigma_{L}[p(e, e'\pi^{+})n]} = \frac{|A_{V} - A_{S}|^{2}}{|A_{V} + A_{S}|^{2}}$$ ■ Isoscalar backgrounds (such as $b_1(1235)$ contributions to *t*-channel) will dilute ratio. - Qualitatively in agreement with our F₊ 1analysis: - We found evidence for small additional contribution to σ_L at W=1.95 GeV not taken into account by the VGL model. - We found no evidence for this contribution at W=2.2 GeV. # Similar approach to confirm $\sigma_L \gg \sigma_T$ at EIC - Exclusive ${}^{2}H(e,e'\pi^{+}n)n$ and ${}^{2}H(e,e'\pi^{-}p)p$ in same kinematics as $p(e,e'\pi^{+}n)$ - $\blacksquare \pi$ *t*—channel diagram is purely isovector (G parity conservation). $$R = \frac{\sigma[n(e, e'\pi^{-}p)]}{\sigma[p(e, e'\pi^{+}n)]} = \frac{|A_{V} - A_{S}|^{2}}{|A_{V} + A_{S}|^{2}}$$ - The π^-/π^+ ratio will be diluted if σ_T is not small, or if there are significant non-pole contributions to σ_L . - Compare measured π^-/π^+ ratio to model expectations. # **EIC Kinematic Reach (Very Tentative)** #### **Assumptions:** - $5(e^{-}) \times 100(p)$. - Integrated L=20 fb⁻¹/yr. - Identification of exclusive p(e,e'π⁺n) events. - 10% exp. syst. unc. - $R=\sigma_L/\sigma_T$ from VR model, and π pole dominance at small -t confirmed in ²H π - $/\pi$ + ratios. - 100% syst. unc. in model subtraction to isolate σ₁. Much more study needed to confirm assumptions. ### Summary - Higher Q² data on the pion form factor are vital to our better understanding of hadronic physics - Pion properties are intimately connected with dynamical chiral symmetry breaking (DCSB), which explains the origin of more than 98% of the mass of visible matter in the universe. - F_{π} is our best hope to directly observe QCD's transition from confinement-dominated physics at large length-scales to perturbative QCD at short length-scales. - Measurement of F_{π} at EIC involves significant challenges. - Need good identification of p(e,e'π⁺n) triple coincidences. - Conventional L-T separation not possible due to low proton ring energies required to access ε<0.8. - Use of polarization degrees of freedom with $\varepsilon \approx 0.95$ seems very difficult due to low E_{CM} required. - As $\sigma_L \gg \sigma_T$ expected, most likely possibility is to use model to extract σ_L from $d\sigma_{UNS}/dt \rightarrow Used$ also for $Q^2=10$ GeV² Cornell expt (1978). - Best to use exclusive π^-/π^+ ratio in e+d collisions to validate model. - Looks promising, but more studies are needed.